entropy change?

Consider the freezing of 1 kg of supercooled water at –10 °C. This is an irreversible

transformation of the water from an initial state (A, supercooled liquid at –10 °C) to a final state (D, ice at –10 °C). The heat of the spontaneous transformation A->D is –315Jg^–1.


What is the entropy change of the surroundings when 1 kg of supercooled water

freezes at –10 °C? [You may assume that the surroundings represent a large heat

bath, which absorbs and releases heat quasi-statically at –10 °C.]


Calculate the entropy change of 1 kg of water when it goes along a quasi-static

(“reversible”) path from State A to State D, passing through two intermediate states [B, water at 0 °C; and C, ice at 0 °C). [You may assume that the specific heat of supercooled water is the same as that of ordinary liquid water.]

thank u

info u may need:

Specific heat of water (temperature independent) cwater 4186 J kg^–1 K^–1

Latent heat of freezing of water (at 0 °C) Lf 333 J g^–1

Specific heat of ice (temperature independent) cice 2093 J kg^–1 K^–1

There are no answers yet.
Be the first to answer this question.